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The truncation error of the rotational form for the convective terms in the Navier—
Stokes equation is examined in the direct numerical simulation (DNS) of the fully
developed turbulent channel flow, in which the low-order finite difference method
was used for the partial derivatives in the wall-normal direction. An estimate of the
truncation error using the Taylor expansion revealed that this truncation error term
is comparable to the rotational stress generation term, represented by the nonlinear
k — e model in the Reynolds averaged turbulence models, in the governing equations
for the Reynolds shear stress and the normal stress due to the Coriolis force term
acting in a channel flow rotating about the spanwise axis. The effective angular
velocity due to the truncation error term was dependent on the distance from the
wall, and the turbulence was reduced on both sides of the walls analogously to the
laminarization of turbulence on the suction side of the conventional rotating channel
flow. This analogy was further assessed in the DNS of the channel flow rotating with
this effective angular velocity. The time development of the wall friction velocity
was similar to that obtained using the rotational forna, 1998 Academic Press

Key Wordstruncation error; rotational form; channel flow; rotation; Coriolis force;
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1. INTRODUCTION

The Navier—Stokes and continuity equations which describe the motion of incompres
fluid as
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aU;

P 0 2)
are derived via the conservation laws of mass and momentum within the small fluid v
umes, where Re is the Reynolds number dndenotes the external forces acting on the
flow. When the Navier—Stokes equation is numerically discretized, it is known that, unle
the (discretized) momentum and the kinetic energy are globally conserved, the result of
numerical simulation can give rise to instabilities [1]; i.e., the conservative property of t
Navier-Stokes equation should be retained in the numerically discretized scheme.

The representative formulation for the convective terms in Eq. (1) which conserves

momentum and the kinetic energy is the skew-symmetric form [2, 3]

1( 0 ou;
=4 —Wuj) +uj— o, 3
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and the rotational form [4, 5]
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Moin and Kim [6] conducted a large-eddy simulation (LES) of a fully developed turbulel
channel flow using the rotational form. The pseudospectral Fourier method was used ir
homogeneous directions, while the first-order finite difference method was used in the \
normal direction to approximate the partial derivatives in Eq. (4).

Horiuti [7] conducted LES of the same flow using the rotational and skew-symmet
forms. A gradual decay of the turbulent state was found when the rotational form was us
whereas good results were obtained when the skew-symmetric form was used. The
performance of the rotational form was considered to be attributable to its large trunca
errors in the vicinity of the wall arising in the first-order finite difference method.

Zang [8] reported extensive numerical experiments on the comparison of these
formulations in various turbulent flows using the spectral method. He demonstrated f
the skew-symmetric form gives fairly good results even in the presence of aliasing err
whereas the rotational form performed poorly. The destabilizing effect of the aliasing err
in the rotational form was recognized in the wiggles of the contour plots, illustrating tl
vorticity distributions, but the decay of turbulence observed in [7] was not reported.

Blaisdellet al.[9] presented a theoretical explanation as to why aliasing errors are |
duced for the skew-symmetric form. Kravchenko and Moin [10] compared various formu
tions for the convective terms in LES of turbulent channel flow, in which the effect of t
dealiasing for the convective terms was examined. They found that the difference betw
the results of the aliased and dealiased simulations was large for the rotational form, whe
it was minimal for the skew-symmetric form, confirming the results of Zang [8].

All these results consistently showed that the skew-symmetric form is superior to
rotational form, but there are two important errors arising in the convective terms: one
the aliasing error and the other is the truncation error. In reality, these two issues are
separable. For example, in [10], it was pointed out that the aliasing error is the lead
source of error for the spectral method, while the truncation error is the leading source
the low-order finite difference method.

Although the role of the aliasing error has been clearly revealed, as yet no phys
significance of the truncation error has been clearly shown. The purpose of the pre
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work is to investigate the mechanism of turbulence decay observed in [7] by examining
role of the truncation error.

The previous analysis in [7] was carried out in LES of turbulent channel flow. Itis felt tt
the poor performance of the rotational form may be attributable to the interference of
turbulence model employed in LES to approximate the subgrid-scale correlations witt
numerical scheme used in the simulation. To eliminate the effect arising in this interfere
we carry out the present analysis in the framework of the direct numerical simulation (D
of a fully developed turbulent channel flow without turning to the subgrid-scale models
which the aliasing errors were eliminated.

The numerical methods used in the present study are briefly described in Section 2,
Section 3 presents the numerical results. In Section 4, the analysis of the truncation err
the rotational form is presented, and its significance is interpreted in relation to the cha
flow with rotation. A numerical scheme which eliminates the drawback of the rotatio
form is presented in Section 5. Our conclusions are given in Section 6.

2. NUMERICAL METHOD

The numerical method used in the present paper is identical to that used by Hc
[7], except for the dealiasing for the convective terms. Dealiasing was implementec
expanding the number of collocation points by a factog tefore transformation into the
physical spacetrule) [4].

The indicesi =1, 2, 3 in Egs. (1) and (2) correspond to the directiogsy, and z,
respectively, where is the streamwise directiory, is the wall-normal direction, and
is the spanwise direction. For notational simplicity, the velocity compon@itdi,, us)
are occasionally denoted ky, v, w). Grid points in they direction are located at the
Chebyshev-Gauss—Lobatto quadrature points [4] as

% = —cos(%j), (5)

wherey; is the coordinate of th¢th grid point in they direction, and is the half-channel
height, andN is the number of grid points in thedirection.

We assume that fields are homogeneous in two directivren z), and impose the
periodic boundary conditions in these two directions, while the no-slip boundary condi
onthe twowalls isimposed in thedirection. The pseudospectral Fourier expansion meth
was used in th& andz directions, whereas the central finite difference method was usec
they direction. In the following, f) denotes a running time average of the instantaneo
horizontal (x — z) plane average of , and f’ denotes the deviation of from the plane
average off .

For discretizing Eq. (1) in time, the convective and pressure-gradient terms were apy
imated by the second-order Adams—Bashforth scheme while the Crank—Nicolson scl
was used for the viscous terms.

The two formulations of the convective terms were compared in the DNS of a fi
developed channel flow with R€Reynolds number based on the wall-friction velocity
u,, ands) =180, 128 129, and 128 grid points were used, respectively, inkhg andz
directions. In the following the subscrigtdenotes a nondimensional quantity scaled by tt
wall variableu, and the kinematic viscosity. The flow was driven by the mean pressur
gradient imposed in the downstream direction.
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A regular mesh system is adopted, and all velocity components and pressure are de
at grid pointsy;, as given by Eq. (5), and both the momentum and continuity equatio
were enforced at these grid points.

Two approximation schemes were used for the first-order partial differential operator:
they direction. One is the first-order central finite differences

(8”) N((SU) _ Uik = Uik ©
ay i,j.k 3y )ik hj1 4+ hj ’

where (f); jx and f; j x denote the values of at the grid point(x;, y;, zc) (Xi =iAX,

7z« =kAz), andh; =y; — yj_1. Ax andAz are the grid intervals in the andz directions,
respectivelys /sy denotes the finite-difference approximation of the partial derivativdg.

The other is the second-order central finite differences

(8_u> - (8_u> - L Ui j+1k + (i = hy) hJ')u- -
/i ik 8Y/ijk  (hjzi+hph; T hjah;

hj+1
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Second-order partial differential operators in yheirection were approximated with the
second-order central finite differences as

(iﬁ) ~2< Ui, j—1k _Uijk + Ui j+1k ) (8)
Y /i ik (hjra+hphy hjahy o (hjpa+hphjp

3. NUMERICAL RESULTS

Theinitial values used in the computations were those obtained by DNS using the Four
Chebyshev polynomials expansion method with R4.80, with 128, 129, and 128 grid
points, respectively, in the, y, andz directions [11], in which aliasing errors were removed
using the 32-rule. The size of the computational domain in thandz directions were
Ly =6.45 andL, = 3.28, respectively. The time increment was chosen to be 0.0002. In :
the computed cases shown in the following, the same Reynolds number, grid points,
computational domain size were used. When the computational results reached static
equilibrium, the first- and second-order partial differential operators ig-tligection were
switched to finite differences, i.e., Eq. (7) for the first-order operators and Eq. (8) for t
second-order operators. The convective terms were approximated using the skew-symn
form. The computation was further carried out until it reached equilibrium (approximate
for 10 nondimensional time unit§ u,)). Time averages were calculated for approximately
six time units, after the computation reached equilibrium (Case I).

In good agreement with the result reported by Horiuti [7], the turbulence state was s
tained using the skew-symmetric form for the convective terms. We compare the compt
results with those obtained using the Fourier—Chebyshev polynomial expansion met
[12]. In[12], 192, 129, and 160 grid points were used, respectively, ir tieandz direc-
tions. The size of the computational domain in shendz directions were #4§ and 2z4,
respectively. In the present study, smaller numbers of grid points were used. To provic
sufficient grid resolution, we have chosen a smaller size of the computational domainin t
two directions. We note that both streamwise and spanwise length of the computational
main (Lx. = 1152 L., = 576, respectively) are much larger than the minimum size of th
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FIG. 1. Mean streamwise velocity profiles obtained for Case | and by &tiid. [13].

periodic computational box that would sustain turbuleflcg, ~ 250— 350 L, ~ 100
(the minimal flow unit [13]).

Figure 1 shows the mean velocity profiles obtained in Case | and byeKah[12]. The
present results lie slightly above the data of Kétral.[12]. Nishiokaet al.[14] showed that
Clauser’s parametés (=(Uc/u;)(H —1)/H, whereH denotes the shape factor adgd
is the centerline velocity) can be used as an indicator to determine whether the comy
mean velocity profile predicts the logarithmic law profile. They found that when 7.0,
the mean velocity obeys the logarithmic law and that otherwise it does noGMadues
were 7.02 and 7.06, respectively, for the results obtained byeiah. [12] and in Case |I.
In both sets of results, the values®@fare close to 7.0, although the present value is slight
larger than that reported by Kiwet al.[12].

The von Kdrméan constant obtained in Case | wa6.38, which is slightly smaller than
the experimentally determined value of 0.4 [14], whereas that in [12] was approxima
equal to 0.4. The intercept of the logarithmic law profile (consBfor the present result
(~5.0) is smaller than that obtained from [12}5.5).

The profiles of the turbulence intensities are shown in Fig. 2. In the present results
peak value of the streamwise component is a slight overestimate of that in [12], whe
both the wall-normal and spanwise components are slightly underestimated.

The distributions of the Reynolds shear stress are shown in Fig. 3. The straightline pr
of the total shear stresg)'v’) — (1/Re)d(u)/dy, indicates that the stress is balanced b
the mean pressure gradient and the flow is in an equilibrium state. The amplit(ude’pf
obtained in Case | is slightly larger than that in [12].

Two reasons for a decreased performance accuracy of the results from Case I, com
with the results obtained by Kirat al.[12], can be considered. The principal reason ma
be the difference in the method of approximating the partial differential opedgtoy.
Kravchenko and Moin [10] reported a shifting up of the mean velocity profile and the ov
estimation of the streamwise turbulence intensity when the second-order finite differe
method is used, which is in good agreement with the present result. Another reason m
the difference in the size of the computational domain, although the wall region is ra
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FIG. 2. y-distributions of turbulence intensities obtained for Case | and by &tral. [13]. u,ns denotes
root-mean-square value of

well resolved in the present study witx, = 9.0 andAz, = 4.5, while Ax, ~ 11.8 and
Az, ~7.0in[12].

Using the presented data as the initial values, we investigated the difference in the re:
obtained using different formulations for the convective terms.

In Case I, the rotational form was used throughout the chapntk y < §). The com-
puted cases are summarized in Table I.

In Fig. 4, the temporal variations of the wall friction velocities, at the lower wall
obtained for Case | and Case Il, normalized by the initial value of the wall friction velocit
U.0, are shown. Similar results were obtained at the upper wall (figure not shawn);
gradually decreased in Case Il, whileremained close to unity in Case |, as was previousl
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FIG. 3. y-distributions of the Reynolds shear stress obtained for Case | and bgtdh{12].
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TABLE |
Case Specifications, Formulations of Approximation for the
Convective Terms, and the Coriolis Force Term

Case Convective terms Coriolis force term
| Skew-symmetric{1 < y/§ < 1) None
Il Rotational -1 < y/§ < 1) Error term
1l Skew-symmetric £1 < y/§ < 1) Eq. (27)

found in [7]. The turbulent state gradually decayed when the rotational form was used, v
it was sustained when the skew-symmetric form was used.

Figure 5 shows the profiles of the Reynolds shear stress normaliaed bytained for
Case Il at u,o/8 = 5.0. In good agreement with the wall friction velocity shown in Fig. 4
the total stress at both walls4¢0.7, implying that the turbulence is substantially reduced

The profiles of the normal component of the turbulence intengity;)'/?, att u,o/8 =
5.0 for Case | and Case Il are shown in Fig. 6. The intensity obtained for Case |
smaller than that for Case | and the peaks of the intensity found in the result for Case
indiscernible in the result obtained for Case I, indicating that the turbulence is decay
in time in Case Il. The streamwise and spanwise components of intensities showed sil
results, but the decrease of the normal component was the maximum.

Figure 7 shows the budget of the turbulent shear str@ss)), in the vicinity of the
lower wall, nondimensionalized witlf', /v obtained for Case | and Case II. The governin
equation foru'v’) is expressed as

uv) Y a(u) a(uv'') _< ,0p /ap>

= u R -
ot 3y 3y ay TV ax

1 82U 1 /au av
L ouw) 5, 1 vy 9)
Re, dydy Re; \ 0X; 0X;
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FIG. 4. Time evolution of the wall friction velocityy,, at the lower wall obtained for Case | and Case II.
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Reynolds shear stress

FIG. 5. y-distributions of the Reynolds shear stress obtained for Case II.

The terms on the right-hand side of Eq. (9) are called the production, convection, veloci
pressure gradient, diffusion, and dissipation terms, respectively. Note that the distributi
of the diffusion and dissipation terms are not included in Fig. 7 because their amplitude \
small.

Figures 7a and b show the distributions near the lower wall for Case Il and Cas
respectively. Note that the Reynolds shear stress has a negative sign in the lower half c
channel. A marked difference is seen in the results obtained using the rotational and
skew-symmetric forms. The velocity—pressure gradient term obtained using the rotatic
form shows a large negative peakyat~ 10 and becomes positive away from the wall,
whereas that obtained using the skew-symmetric form remains positive.
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FIG. 6. y-profiles of the normal component of the turbulence intensityy)*?, att u,o/8 = 5.0 for Case |
and Case Il.
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FIG. 7. Balance of the turbulent shear streggy’): (a) Case Il; (b) Case I. (vpg denotes the velocity—pressut
gradient term.)

It is observed that the residual of the terms in the budget of Eqg. (9) shown in Fig.
is very small, whereas the residual is a large negative value near the lower wall for
budget shown in Fig. 7a. This imbalance found in Fig. 7a is inconsistent with the deca
turbulence observed in Fig. 4, because the negative residual indicatéguhat/at < 0.
This negativity implies thatu’v’) becomes a much larger negative value with the lapse
time. In turn, it implies an increase of the streamwise component of turbulence inter
via the shear production term;(u’v’)(d{u)/dy), in the lower half of the channel. This
inconsistency will be discussed in the following section.

Anotable difference was also found in the budget of the normal component of the turbt
energy(v'v’) (figure not shown) between the results obtained using the skew-symme
form and the rotational form, as pointed out by Horiuti [7]. The DNS results obtained us
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the Fourier—Chebyshev polynomial expansion method shown in [12] and [15] are sim
to the results obtained using the skew-symmetric form.

The presentresults are in good agreement with the results obtained using the LES me
reported by Horiuti [7]. It is shown that the laminarization of the turbulent state observ
in [7] is not intrinsic to the turbulence model employed in LES, but is intrinsic to th
formulation of the approximation method for the convective terms in the Navier—Stok
equation.

4. ANALYSIS OF TRUNCATION ERRORS

In this section, we conduct the analysis of the truncation error for the rotational form.
[7], it was pointed out that the major error in the rotational form comes from the truncati
of the term

Su  18u?

—U— 4 -—, 10
3y + 2 8y (10)
contained in they-momentum equation, whereas no serious error is introduced using
skew-symmetric form when the low-order finite difference method is used. These poi

were confirmed in the present study.

4.1. Estimate of Truncation Errors Involved in the Rotational Form

When the first-order partial differential operators in Eq. (10) are approximated by t
first-order central finite differences (Eqg. (6)), we obtain an estimate of the exact truncat
error term, Eq. (10), using the Taylor expansion, as

hj+1—hj (9u 2+h%+1_h”1hi+h? ENEN (11)
2 dy /| 4 ay \ ay j'

The first and second terms in Eq. (11) are first and second order with respect to the
intervalh;, respectively.
The corresponding error for the second-order finite difference, Eq. (7), is estimated «

hiahy [ 0 ou)® (12)
4 oy \ ay j’

in which the leading term is of second order. The identical truncation error terms w
different coefficients are contained in the first- (Eq. (11)) and the second- (Eqg. (12)) or
finite difference.

We examine the contribution of the truncation error term, Eq. (10), in the balance of 1

turbulent shear stress as
B 18u?
“lu(=uM s 22N, (13)
8y 28y

which is obtained by multiplying/’ to the y-momentum equation. Theg-distributions
of the term, Eg. (13), obtained using the first-order and second-order finite differer
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FIG. 8. y-profiles of the exact truncation error term in the balance of the turbulent shear stress, Eq. (13)
the error term approximated using the Taylor expansion, Eq. (14) and Eq. (15).

approximations foB /8y, are shown in Fig. 8. The term contained in Eq. (13) is comput
using the velocity data obtained in Case I. The result obtained using the first-order fi
difference approximation is similar to that obtained using the second-order approxima
although the peak value is smaller for the result obtained using the first-order approximé
than for that obtained using the second-order approximation.

In Fig. 8, we included the distributions of the error term approximated using the Tay
expansion, Eqg. (11), in the balance of the turbulent shear stress as

B (T SEUE ) SRR R IR
2 dy /| 4 ay \ dy j ’

and that approximated using the Taylor expansion, Eq. (12), as

. _ 2
(w3 ()

It is observed that the distributions of Eq. (13) approximated using the first-order fir
difference method fo8/8y and Eq. (14) are almost identical. A similar result is obtaine
for the second-order finite difference method, indicating that the estimate of the trunce
error term obtained using the Taylor expansion is very accurate.
In [7], it was shown that the first term in Eq. (11) is proportional tcf Rethe vicinity

of the wall and that it introduces a large error into thenomentum equation. Associated
with this large error, the result obtained using the first-order approximation in Fig. 8 sh
a large negative value near the wall. This large error can be eliminated by inserting
velocity components, which are split into the mean streamwise velocity and its devia
part, i.e.,u; = (u;j)di1 + u;, into the rotational form [7]. When this splitting is inserted
however, the laminarization of the turbulent state observed in the previous section is
prevented. Thereby, the first term in Eq. (11) is not the dominant truncation error term;
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FIG. 9. y-profiles of the velocity—pressure gradient term, Eq. (13), and the residual of the terms in the buc
of (u'v'), including Eqg. (13).

most significant contribution arises in the second term in Eq. (11). In fact, the region wit
large negative value shown in Fig. 8 is confined only to the immediate vicinity of the w:
(y/8 < —0.98).

For brevity, we carried out the following analysis using the second-order central fin
differences (Eq. (7)) for the first-order partial differential operators.

We examine the contribution of the term in Eq. (13) in the budgéat’ef) using Fig. 9, in
which the distributions of the velocity—pressure gradient term, the term in Eq. (13), and
residual of the terms in the budget@fv’), including Eq. (13), are shown. The truncation
error term, Eq. (13), is very large, even when the dense grid points of 129 for the pre:s
Reynolds number are used, and balances the velocity—pressure gradient term. It shou
noted that the residual is now positive, which indicates éffatv’) /0t > 0. This positivity
implies that(u’v’) obtains a much smaller negative value with the lapse of time, which
turn, results in a suppression of the streamwise component of turbulence intensity via
reduction of the shear production term{u’v’)(d(u)/ady). Thus, the inconsistency found
in the budget ofu’v’) shown in Fig. 7a is eliminated.

Equation (15) can be rearranged as

2 ’ 2
Pieahy |0 J(0uyTL 10U fou : (16)
4 ay ay 2 9y \ oy
When the two terms in Eq. (16) are integrated with respegtftom the lower wall to the
upper wall, the first term vanishes, while the second term remains, implying that the sec

term is a major term. The second term can be rearranged by inserting the decompositic
the velocity into the mean and the fluctuation pauts; (u) 4+ U’, as

hj.ih; o) [ (9U\*\ by, (3_“>3
2 ay<(8y>>jL 4 ay) | a7

It was found that distribution of the terr(du’/dy)?) was similar to that of the term



TRUNCATION ERROR ANALYSIS OF THE ROTATIONAL FORM 683

% Eq. (18)
1 Eq. (19)
b — - —- - Second term in Eq. (17)

LI L I L N L L L Y B

Terms in the budget of <u'v'>
o
(==}
T

-1.0 -0.8 -0.6 -0.4 -0.2
y/é

FIG. 10. y-profiles of the second term in Eq. (17), the term in Eq. (18), and the term in Eq. (19).

(3(u)/3y)?;i.e.,

hjtihj a(u) / [ou\?
2 W<(ay)> 4o
3(u) hj,1h; <8<u)>2

~C
! ay 2 ay

(19)

whereC; is a numerical factof~0.4). The distributions of the termsin Eq. (18) and Eq. (19
are compared in Fig. 10. Although the term in Eq. (18) has a longer tail away from the \
than the term in Eq. (19), the two terms are generally similar. For comparison, the pr
of the second term in Eq. (17) is included in Fig. 10. It can be seen that the contributio
this term is insignificant near the wall. Therefore, Eq. (16) can be approximated as

AL )
4 ay oy 2 oy \ oy oy 2 oy
We note thatin the evaluation of Egs. (14), (15), (17), (18), and (19), the partial derivat
d/0y were approximated using the second-order finite difference, Eq. (7), so that the pe
derivatives in these equations can just as well be evaluated by exact derivatives up t
leading-order terms. We have also conducted an evaluation using the Chebyshev polyn

expansions and obtained results similar to those shown in the present paper, becau
leading terms were identical for these two approximation methods.

4.2. Relationship of the Truncation Error with Nonlinearke Model
and Rotating Channel Flow

In the previous section, it was shown that the truncation error associated with the {
and second-order finite differences yields an extra term in the budget of the turbulent <
stress, and its contribution to the budget is considerably large. The role of this extra t
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however, has not yet been clearly revealed. By turning to the nonlinearmodel for the
Reynolds stresses in the Reynolds averaged turbulence models [16], we show that the
of the major truncation error term, Eq. (20), is analogous to that of the Coriolis force te
in channel flow rotating about theaxis.

The nonlineak — ¢ model has been successfully used to express the anisotropy of:
turbulence intensities in the sheared turbulence (see Speziale [16] and references the
For flows which are homogeneous in two directions, this model yields the approximat
of the Reynolds stresses as

L2, k2 1 a(u)\ 2
(UU>—§k+ 62{(3C11—3Cr3> (8y> },
IO~ 2 k3 1 2 a(u) 2
(vv') >~ §k+ z{(—écrl—i- §Cr3) (W) }, (21)

o2 ke 1 1 a(u) \ 2
(ww) ~ §k+ 62{ (—Scrl - 3Cr3) <8y) )

wherek denotes the turbulent kinetic enerdys= (U'U + v'v' + w'w’)/2, € denotes the
dissipation rate ok, andC,; andC,3 are model parameters. The values@y andC,3
contained in Eq. (21) were optimized in the simulation of turbulent channel flow, where t
values fork ande were provided by solving the governing equationsif@nde using the
k — e model [16]. It was shown th&,; is positive(~0.05) andC.3 is negativg(~—0.01)
[16], so that the turbulence intensities are correctly predicteas) > (w'w’) > (v'v’)
near the wall.

From Eqg. (21), we derive the approximation for the téufu’ — v'v’) as

/Y i k3 8(U> 2
(' —v'v')y ~ z{(Cﬂ—cfg)<a—y> } (22)

in which the term identical to the term in Eq. (20) is found, although their coefficients diffe
In the nonlineak — e model, the length scale is represented by the t€¥fje [17], whereas
itis represented by the tergy/(h;1hj)/2 in Eq. (20).

The present analysis shows that the truncation error term, Eq. (13), can be approxim

as
u’ u(Su + Lou’ ~ —2Qr(U'U —V'V) (23)
sy 28y o R ver
a(u)
Qg = CR——, 24
R=Cryy (24)

by noting that the termin Eq. (20) is multiplied by the teitn) /9y, whereCg is a numerical
constant. The right-hand side of Eq. (23) corresponds to the rotational stress generation
in the channel flow rotating with the effective angular velogity about thez-axis.

In Fig. 11, the distribution of the truncation error term, Eq. (13), is shown with th
rotational stress generation ter2Qg(U'u’ — v'v’). They are almost identical whely, is
chosen to be-0.0115, indicating that in the budget of the turbulent shear stress, the er
term behaves analogously to the Coriolis force term acting in the rotating channel flow.
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FIG. 11. y-profiles of the truncation error term in the budget(ofv’), Eq. (13), and the rotational stress
generation term-2Qg(u'u’ — v'v’).

The results obtained in the present paper are similar to those reported in [7] despit
difference in the numerical method (DNS in the present study and LES in [7]), the differe
in the Reynolds number (Re= 180 in the present study and 640 in [7]), and the differenc
in the mesh configurations. It may be considered that the agreement of the truncation
term and the Coriolis force term, Eq. (23), is a numerical coincidence, but based or
comparison of the results of these two studies and on the observation that the trunc
error term can be analytically correlated to the Coriolis force term via the nonknear
model, we consider that this agreement is not a mere coincidence.

However, there are similarities and differences between the pure Coriolis force term
the truncation error term associated with the rotational form.

The angular velocityQ2g, is dependent on the distance from the wall, unlike the Coriol
force acting on the pure rotating channel in which the angular velo@ityis constant
throughout the channel. Becaugés constant for pure rotating channel flow, an asymmet
of the Coriolis force acting on the velocity fields arises between the lower and upper ha
of the channel [18]. WheR is negative, the turbulence is reduced in the lower half of tt
channel (suction side), while it is enhanced in the upper half of the channel (pressure <

In contrast, the sign of the effective angular velocity for the truncation error t@gm,
is dependent on thg coordinate2g is very large in close proximity to the walls becaust
a(u)/dy ~ Re, in these regions, but rapidly decreases with the distance from the wall.
sign is negative in the lower half and positive in the upper half of the channel, and t
asymmetry does not arise. The dimensionless paran&ter-2Q2r/(d(u)/dy)), defined
in [18] is constant throughout the channel(023). As was shown in [18], the positiv&
is associated with the stabilized flow, and the turbulence level is lowered in both the Ic
and upper halves of the channel.

Table 1l lists the correspondence of the terms in the budget of the Reynolds stre
between the terms due to the Coriolis force (rotational stress generation term) for
rotating channel and the truncation error terms due to the rotational form. It was found
in the budget of the normal component of turbulence fluctuatigrs;), there is a term
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TABLE I

Correspondence between the Rotational Stress Generation Term for the Rotating
Channel and the Truncation Error Term for the Rotational Form in the Budget of

the Reynolds Stresses

Reynolds stress

Rotational stress generation term

Truncation error term

(u'u’) AQR(UV")
(v'v') —4QR(U")
(u'v’) —2Qr(U'Y —V'V')

None
—(u(-u+

1&)>
2 ay
1002
2 ay

corresponding to the Coriolis force term:

—2<v’( u(;—; +

Lo?
28y )/

(25)

Figure 12 shows thg-distributions of the term in Eqg. (25), and the rotational stress gene

ation term due to the angular velocifyr, as

—4QR(UY'),

(26)

whereCg was set as-0.0115. They are similar to each other in the vicinity of the wall
(y/6§ =—1.0~ —0.95). In this region, the direct effect of the Coriolis force term and the
error term is to reduce the amplitude @fv’). At a distance from the wall, the truncation
error term becomes positive, while the rotational stress generation term remains nege
but in this region, the contribution of the truncation error term to the budgét’of) is
small. Thereby, the normal fluctuation is damped, as shown in Fig. 6, due to the trunca

error term.

1 1 1 I 1 1 1 I 1 1 1 I 1 1 I 1 1 1
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FIG. 12. y-profiles of the truncation error term in the budget(ofv’), Eq. (25), and the rotational stress

generation term-4Qg(U'v’).
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It should be noted that, in the budget of the streamwise component of turbulent f
tuations, (U'u’), there is no truncation error term corresponding to the rotational str
generation term because there is not significant error term x-thementum equation. In
the system rotating with angular veloci®or Qg, the rotational stress generation terms i
the budgets ofu’u’) and(v’v’) cancel each other; i.e., the turbulent kinetic energy is co
served in the presence of the Coriolis force term, while it is not conserved in the presen
the extra term due to the truncation error. However, the amplitude of the normal fluctuat
(u'u’y, is reduced via a reduction of the shear production terfu/v') (3 (u)/dy), due to
the decrease of the turbulent shear stréss,). In the budget ofu’'u’) for the rotating
channel, the reduction @f’'u’) due to the decrease of the shear production term was mi
significant than the reduction due to the Coriolis force term.

The diagram for the turbulence suppression observed in the present study can be
marized as follows. A large truncation error due to the rotational form irythreomentum
equation primarily reduces the turbulent shear stress and the fluctuations normal to the
acting similarly to the Coriolis force term. In turn, it dampens the shear production term
the streamwise component of fluctuations, and subsequently, the streamwise fluctuat
suppressed.

We note that, corresponding to the nonconservation of the turbulent kinetic energ
the extra term due to the truncation error, kinetic energy is not conserved in the discre
sense when the rotational form is used.

4.3. DNS of Rotating Channel Flow

For comparison, we carried out DNS of rotating channel flow, in which the Coriolis for
with an angular velocity of2g with Cr = —0.0115 about the-axis was explicitly applied
as

Ui AU ap* 1 3% r2 92
il + M — i + ! R

_— = — 2eimnmUn — Sz R 27
ot T ax % | Redxex, - mnemin o2 Ty 7)

where(21, 2, Q3) = (0, 0, Qr), €ijk is the alternating tensor, arpd is the reduced static
pressure:

1
p*=p— ZQ&2 (28)

Theterm} Q2r2, is the centrifugal force potential caused by system rotation, whisthie
distance of any point in the field from the axis of rotation. The skew-symmetric form w
used for the convective terms throughout the channel in conjunction with the second-c
finite differences (Eq. (7)) for first-order partial differential operators in yheirection
(Case IlI).

Because of the dependencesi on they-coordinate and the nonintegrability of the
term, Q% with respect toy, the last term in Eq. (27) was not absorbed into the centrifug
force potential, unlike in the pure rotating channel.

The last term in Eq. (27) yields the extra term in the budget of the Reynolds shear st
(u'v'), given as

u'r?oQ% 1, ,00%
— ) = Z(Ur)—=. 29
< 2 90X > 2( >3Xi ( )
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FIG. 13. Time evolution of the wall friction velocity, , at the lower wall obtained for Case Il and Case |l

Since the ternr? is deterministic,(u'r?) = (u')(r?) =0, this extra term is negligible in
the budget of the Reynolds shear stress on average, although the computed value o
term may not be exactly equal to zero because of the finite statistical sample size
in computing averages. A similar extra term is yielded in the budgev’af), but the
contribution of this term is also negligible on average.

Figure 13 shows the time development of the wall friction velocity at the lower wa
obtained from Case lll. Similar results were obtained at the upper wall (figure not show
Its temporal variation is qualitatively similar to the developmentigfobtained using the
rotational form obtained for Case Il, but, obtained for Case lll, decreases rapidly. We
consider that this difference is attributable to the difference between the rotational st
generation term and the truncation error term in the budgét' of) shown in Fig. 12. The
amplitude of the truncation error term is smaller than that of the rotational stress genera
term, which is consistent with the slower decay of turbulence in the result obtained us
the rotational form in Case Il. This slower decay may also be attributable to the absenc
the truncation error term in the budget(ofu’).

5. ELIMINATION OF LARGE TRUNCATION ERRORS

Large truncation errors found in the previous section were generated because the prc
rule [10],

a(fg _of 09

is not satisfied when the conventional finite difference scheme is used for the first-or
partial differential operatof/dy. This inaccuracy in approximating the product rule is
significant when the first- and second-order finite differences (Egs. (6) and (7)) are u:
We have found that, when the third- or fourth-order finite differences are used, the inaccur
of the approximation of the product rule is substantially reduced, and the laminarizatior
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the turbulent state observed in Section 3 is prevented (data not shown). The drawba
the higher-order finite differences is that the additional boundary conditions are requ
near the walls.

A scheme which satisfies the product rule, even when the second-order finite differe
are used, was considered by Schumann [19]. Recent works by Kajishima[20, 21], Suzuk
Kawamura [22], and Kawamura and Kondoh [23] showed that, when the(tie(@g/dy)) ;
is approximated as

<f3_g> g fitt fi Gia — G f - fi+fi10i—9j1 (31)
j

ay 2 hj+1 2 hj ’

the product rule is satisfied because the terms on the right-hand side of Eq. (31) ce
rewritten as

{O{ URECTEE Sl P RNUT® fj—lgi—l}
hj+1 h;
f givat+ 0 fipa— 99 fi—fia
{a > hios +(Q-w) 5 h,-

o) ()
ay J; ay j’

wherex is arbitrary, in order to satisfy the product rule, butitis generally chosen to be ec
toh;j/(h;+1+ hj). Therefore, this scheme is consistent with the product rule (referred tc
the consistent scheme [22] below). Inthe consistent scheme, the convective terms formt
by the skew-symmetric, divergence, and convective forms are algebraically equivalel
each other so long as the continuity equation of the velocity field is ensured. These sec
order-accuracy consistent schemes can be extended to the fourth-order-accuracy sc
[20, 21].

When the rotational form is used in conjunction with the consistent scheme, a Iz
truncation error presented in the previous section can be eliminated, because in this sc

su? su

It should be noted, however, that another drawback of the rotational form, i.e., the oc
rence of large aliasing errors, is not eliminated, even when the consistent scheme is
Therefore, when dealiasing is not performed for the convective terms, we consider the
skew-symmetric form, used in conjunction with the consistent scheme, still yields be
results, because the aliasing errors are reduced in the skew-symmetric form [9].

An alternative scheme which eliminates the large truncation error is the one use
Kravchenko and Moin [10]. They conducted LES of turbulent channel flow using t
dealiased Fourier pseudospectral method irxtaedz directions, and the B-spline method
in the wall-normal direction. The streamwise component of the velooitas expanded as

uex,y,zt) = Z 0 (K. kz. 1) €94 2 BK(y), (33)
K. j.kz

whereB}‘(y) is the B-spline of ordek, andk, andk, denote the wave numbers, respectively
in thex andz directions.B}‘(y) is defined on a set of knot points[10]. In this method,



690 HORIUTI AND ITAMI

the term(u(du/ay)) is evaluated via the discrete weak form as
“ikeX a—ik,z pk ou
/e e B, (y)(u—) dxdydz (34)
% ay
dBK L
=2 [/ Blk(Y){ Br(Y) ) } dy} QmCin, (35)
m n ay

using the method of weighted residuals, whérdenotes the entire computational domain.
Similarly, the termdu?/dy can be evaluated as

ad
SN [ / BF(y)a—y{Bmy) Br(y)} dy] Cirm{in. (36)

BecauseB}((y) are the (piecewise) polynomials, Eq. (36) can be rewritten as
Zm: Zn: U Bl"(y>{ Bﬁq(y)%;y)} dy] Gl
+§ Zn: U Bl"(y){ Bﬁ(y)%y(y)} dy] Gimin
= sz: Zn: {/ B|"(Y){ Br(Y) 8%5;” } dy] CignCin- (38)

Therefore, in this method, Eq. (32) is satisfied and the large truncation error does not a
even when the rotational form is used.

In summary, the integration-by-parts used analytically in derivations of conservati
properties can also be directly applied to some discretization methods, namely, the consi
scheme and the Kravchenko—Moin scheme.

(37)

6. CONCLUSIONS

The truncation error of the rotational form for the convective terms in the Navier—Stok
equation is examined. The flow field which was considered in the present study, was
fully developed turbulent channel flow. The direct numerical simulation (DNS) method w
used to solve the Navier—Stokes and continuity equations. The partial derivatives in
wall-normal direction were approximated by the first- and second-order finite differer
method.

Itwas shown that the major error comes from the truncation error in the normal compor
of the momentum equation. The heuristic estimate of the truncation error using the Ta
expansion revealed that this truncation error term is comparable to the difference betw
the streamwise and normal components of the turbulence fluctuations represented b
nonlineark — ¢ model in the Reynolds averaged turbulence models. Therefore, in t
governing equations for the Reynolds shear stress and the normal stress, this trunc
error term behaves analogously to the rotational stress generation term due to the Co
force acting in the channel flow rotating about the spanwise axis.

Similarities to and differences from the conventional rotating channel flow were di
cussed. The effective angular velocity due to the truncation error term was depender
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the distance from the wall, and the turbulence was reduced on both sides of the walls
results were in good agreement with the previous results obtained using the large-
simulation method [7].

The DNS of the channel flow rotating with this effective angular velocity was furth
conducted to assess this analogy. The time development of the wall friction velocity
similar to that obtained in DNS using the rotational form.

Numerical schemes which eliminate the large truncation error for the rotational fc
were discussed.

The truncation errors are roughly divided into two groups: dissipative errors and dispel
errors. When the convective terms are approximated using the central finite difference:
Taylor expansion of the truncation error shows thatthe error termis generally dispersive|
In fact, when the estimates of the truncation errors, Eq. (11) and Eq. (12), are integrated
respect toy from the lower wall to the upper wall, the integrals vanish; i.e., the momentt
is neither increased nor decreased by the truncation error term. The decay of turbu
previously observed in the numerical simulation was mostly attributable to the excessi
dissipative errors [24]. In the present study, we have shown that some dispersive erro
also induce the decay of turbulence due to the nonlinearity of the convective terms. S
care should be taken in dealing with the low-order finite difference method, because
truncation error terms of the multiples of the/dy term, usually associated with the first- or
second-order finite difference method, can lead to erroneous results particularly in turbi
flows with strong shear.
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