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The truncation error of the rotational form for the convective terms in the Navier–
Stokes equation is examined in the direct numerical simulation (DNS) of the fully
developed turbulent channel flow, in which the low-order finite difference method
was used for the partial derivatives in the wall-normal direction. An estimate of the
truncation error using the Taylor expansion revealed that this truncation error term
is comparable to the rotational stress generation term, represented by the nonlinear
k− ε model in the Reynolds averaged turbulence models, in the governing equations
for the Reynolds shear stress and the normal stress due to the Coriolis force term
acting in a channel flow rotating about the spanwise axis. The effective angular
velocity due to the truncation error term was dependent on the distance from the
wall, and the turbulence was reduced on both sides of the walls analogously to the
laminarization of turbulence on the suction side of the conventional rotating channel
flow. This analogy was further assessed in the DNS of the channel flow rotating with
this effective angular velocity. The time development of the wall friction velocity
was similar to that obtained using the rotational form.c© 1998 Academic Press

Key Words:truncation error; rotational form; channel flow; rotation; Coriolis force;
nonlineark − ε model.

1. INTRODUCTION

The Navier–Stokes and continuity equations which describe the motion of incompressible
fluid as

∂ui

∂t
+ u j

∂ui

∂xj
= − ∂p

∂xi
+ 1

Re

∂2ui

∂xk∂xk
+ fi , (1)
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∂ui

∂xi
= 0 (2)

are derived via the conservation laws of mass and momentum within the small fluid vol-
umes, where Re is the Reynolds number andfi denotes the external forces acting on the
flow. When the Navier–Stokes equation is numerically discretized, it is known that, unless
the (discretized) momentum and the kinetic energy are globally conserved, the result of the
numerical simulation can give rise to instabilities [1]; i.e., the conservative property of the
Navier-Stokes equation should be retained in the numerically discretized scheme.

The representative formulation for the convective terms in Eq. (1) which conserves the
momentum and the kinetic energy is the skew-symmetric form [2, 3]

1

2

{
∂

∂xj
(ui u j ) + u j

∂ui

∂xj

}
, (3)

and the rotational form [4, 5]

u j

(
∂ui

∂xj
− ∂u j

∂xi

)
+ 1

2

∂

∂xi
(u j u j ). (4)

Moin and Kim [6] conducted a large-eddy simulation (LES) of a fully developed turbulent
channel flow using the rotational form. The pseudospectral Fourier method was used in the
homogeneous directions, while the first-order finite difference method was used in the wall
normal direction to approximate the partial derivatives in Eq. (4).

Horiuti [7] conducted LES of the same flow using the rotational and skew-symmetric
forms. A gradual decay of the turbulent state was found when the rotational form was used,
whereas good results were obtained when the skew-symmetric form was used. The poor
performance of the rotational form was considered to be attributable to its large truncation
errors in the vicinity of the wall arising in the first-order finite difference method.

Zang [8] reported extensive numerical experiments on the comparison of these two
formulations in various turbulent flows using the spectral method. He demonstrated that
the skew-symmetric form gives fairly good results even in the presence of aliasing errors,
whereas the rotational form performed poorly. The destabilizing effect of the aliasing errors
in the rotational form was recognized in the wiggles of the contour plots, illustrating the
vorticity distributions, but the decay of turbulence observed in [7] was not reported.

Blaisdellet al. [9] presented a theoretical explanation as to why aliasing errors are re-
duced for the skew-symmetric form. Kravchenko and Moin [10] compared various formula-
tions for the convective terms in LES of turbulent channel flow, in which the effect of the
dealiasing for the convective terms was examined. They found that the difference between
the results of the aliased and dealiased simulations was large for the rotational form, whereas
it was minimal for the skew-symmetric form, confirming the results of Zang [8].

All these results consistently showed that the skew-symmetric form is superior to the
rotational form, but there are two important errors arising in the convective terms: one is
the aliasing error and the other is the truncation error. In reality, these two issues are not
separable. For example, in [10], it was pointed out that the aliasing error is the leading
source of error for the spectral method, while the truncation error is the leading source for
the low-order finite difference method.

Although the role of the aliasing error has been clearly revealed, as yet no physical
significance of the truncation error has been clearly shown. The purpose of the present
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work is to investigate the mechanism of turbulence decay observed in [7] by examining the
role of the truncation error.

The previous analysis in [7] was carried out in LES of turbulent channel flow. It is felt that
the poor performance of the rotational form may be attributable to the interference of the
turbulence model employed in LES to approximate the subgrid-scale correlations with the
numerical scheme used in the simulation. To eliminate the effect arising in this interference,
we carry out the present analysis in the framework of the direct numerical simulation (DNS)
of a fully developed turbulent channel flow without turning to the subgrid-scale models, in
which the aliasing errors were eliminated.

The numerical methods used in the present study are briefly described in Section 2, while
Section 3 presents the numerical results. In Section 4, the analysis of the truncation error for
the rotational form is presented, and its significance is interpreted in relation to the channel
flow with rotation. A numerical scheme which eliminates the drawback of the rotational
form is presented in Section 5. Our conclusions are given in Section 6.

2. NUMERICAL METHOD

The numerical method used in the present paper is identical to that used by Horiuti
[7], except for the dealiasing for the convective terms. Dealiasing was implemented by
expanding the number of collocation points by a factor of3

2 before transformation into the
physical space (32-rule) [4].

The indicesi = 1, 2, 3 in Eqs. (1) and (2) correspond to the directionsx, y, and z,
respectively, wherex is the streamwise direction,y is the wall-normal direction, andz
is the spanwise direction. For notational simplicity, the velocity components(u1, u2, u3)

are occasionally denoted by(u, v, w). Grid points in they direction are located at the
Chebyshev–Gauss–Lobatto quadrature points [4] as

yj

δ
= −cos

(
π j

N

)
, (5)

whereyj is the coordinate of thej th grid point in they direction, andδ is the half-channel
height, andN is the number of grid points in they direction.

We assume that fields are homogeneous in two directions (x and z), and impose the
periodic boundary conditions in these two directions, while the no-slip boundary condition
on the two walls is imposed in they direction. The pseudospectral Fourier expansion method
was used in thex andz directions, whereas the central finite difference method was used in
the y direction. In the following,〈 f 〉 denotes a running time average of the instantaneous
horizontal(x − z) plane average off , and f ′ denotes the deviation off from the plane
average off .

For discretizing Eq. (1) in time, the convective and pressure-gradient terms were approx-
imated by the second-order Adams–Bashforth scheme while the Crank–Nicolson scheme
was used for the viscous terms.

The two formulations of the convective terms were compared in the DNS of a fully
developed channel flow with Reτ (Reynolds number based on the wall-friction velocity,
uτ , andδ) = 180; 128, 129, and 128 grid points were used, respectively, in thex, y, andz
directions. In the following the subscript+ denotes a nondimensional quantity scaled by the
wall variableuτ and the kinematic viscosityν. The flow was driven by the mean pressure
gradient imposed in the downstream direction.
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A regular mesh system is adopted, and all velocity components and pressure are defined
at grid pointsyj , as given by Eq. (5), and both the momentum and continuity equations
were enforced at these grid points.

Two approximation schemes were used for the first-order partial differential operators in
the y direction. One is the first-order central finite differences(

∂u

∂y

)
i, j,k

∼
(

δu

δy

)
i, j,k

= ui, j +1,k − ui, j −1,k

h j +1 + h j
, (6)

where( f )i, j,k and fi, j,k denote the values off at the grid point(xi , yj , zk) (xi = i 1x,

zk = k1z), andh j = yj − yj −1. 1x and1z are the grid intervals in thex andz directions,
respectively.δ/δy denotes the finite-difference approximation of the partial derivative∂/∂y.
The other is the second-order central finite differences(

∂u

∂y

)
i, j,k

∼
(

δu

δy

)
i, j,k

= h j

(h j +1 + h j )h j
ui, j +1,k + (h j +1 − h j )

h j +1h j
ui, j,k

− h j +1

(h j +1 + h j )h j +1
ui, j −1,k. (7)

Second-order partial differential operators in they direction were approximated with the
second-order central finite differences as(

∂2u

∂y2

)
i, j,k

∼ 2

(
ui, j −1,k

(h j +1 + h j )h j
− ui, j,k

h j +1h j
+ ui, j +1,k

(h j +1 + h j )h j +1

)
. (8)

3. NUMERICAL RESULTS

The initial values used in the computations were those obtained by DNS using the Fourier–
Chebyshev polynomials expansion method with Reτ = 180, with 128, 129, and 128 grid
points, respectively, in thex, y, andzdirections [11], in which aliasing errors were removed
using the 3/2-rule. The size of the computational domain in thex andz directions were
Lx = 6.4δ andLz = 3.2δ, respectively. The time increment was chosen to be 0.0002. In all
the computed cases shown in the following, the same Reynolds number, grid points, and
computational domain size were used. When the computational results reached statistical
equilibrium, the first- and second-order partial differential operators in they-direction were
switched to finite differences, i.e., Eq. (7) for the first-order operators and Eq. (8) for the
second-order operators. The convective terms were approximated using the skew-symmetric
form. The computation was further carried out until it reached equilibrium (approximately
for 10 nondimensional time units (δ/uτ )). Time averages were calculated for approximately
six time units, after the computation reached equilibrium (Case I).

In good agreement with the result reported by Horiuti [7], the turbulence state was sus-
tained using the skew-symmetric form for the convective terms. We compare the computed
results with those obtained using the Fourier–Chebyshev polynomial expansion method
[12]. In [12], 192, 129, and 160 grid points were used, respectively, in thex, y, andz direc-
tions. The size of the computational domain in thex andz directions were 4πδ and 2πδ,
respectively. In the present study, smaller numbers of grid points were used. To provide a
sufficient grid resolution, we have chosen a smaller size of the computational domain in these
two directions. We note that both streamwise and spanwise length of the computational do-
main (Lx+ = 1152, Lz+ = 576, respectively) are much larger than the minimum size of the
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FIG. 1. Mean streamwise velocity profiles obtained for Case I and by Kimet al. [13].

periodic computational box that would sustain turbulence(Lx+ ≈ 250− 350, Lz+ ≈ 100)
(the minimal flow unit [13]).

Figure 1 shows the mean velocity profiles obtained in Case I and by Kimet al. [12]. The
present results lie slightly above the data of Kimet al.[12]. Nishiokaet al.[14] showed that
Clauser’s parameterG (=(UC/uτ )(H − 1)/H , whereH denotes the shape factor andUC

is the centerline velocity) can be used as an indicator to determine whether the computed
mean velocity profile predicts the logarithmic law profile. They found that whenG ≤ 7.0,
the mean velocity obeys the logarithmic law and that otherwise it does not. TheG values
were 7.02 and 7.06, respectively, for the results obtained by Kimet al. [12] and in Case I.
In both sets of results, the values ofG are close to 7.0, although the present value is slightly
larger than that reported by Kimet al. [12].

The von Kármán constant obtained in Case I was≈0.38, which is slightly smaller than
the experimentally determined value of 0.4 [14], whereas that in [12] was approximately
equal to 0.4. The intercept of the logarithmic law profile (constantB) for the present result
(≈5.0) is smaller than that obtained from [12](≈5.5).

The profiles of the turbulence intensities are shown in Fig. 2. In the present results, the
peak value of the streamwise component is a slight overestimate of that in [12], whereas
both the wall-normal and spanwise components are slightly underestimated.

The distributions of the Reynolds shear stress are shown in Fig. 3. The straightline profile
of the total shear stress,〈u′v′〉 − (1/Re)∂〈u〉/∂y, indicates that the stress is balanced by
the mean pressure gradient and the flow is in an equilibrium state. The amplitude of〈u′v′〉
obtained in Case I is slightly larger than that in [12].

Two reasons for a decreased performance accuracy of the results from Case I, compared
with the results obtained by Kimet al. [12], can be considered. The principal reason may
be the difference in the method of approximating the partial differential operator∂/∂y.
Kravchenko and Moin [10] reported a shifting up of the mean velocity profile and the over-
estimation of the streamwise turbulence intensity when the second-order finite difference
method is used, which is in good agreement with the present result. Another reason may be
the difference in the size of the computational domain, although the wall region is rather
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FIG. 2. y-distributions of turbulence intensities obtained for Case I and by Kimet al. [13]. urms denotes
root-mean-square value ofu.

well resolved in the present study with1x+ = 9.0 and1z+ = 4.5, while1x+ ≈ 11.8 and
1z+ ≈ 7.0 in [12].

Using the presented data as the initial values, we investigated the difference in the results
obtained using different formulations for the convective terms.

In Case II, the rotational form was used throughout the channel(−δ ≤ y ≤ δ). The com-
puted cases are summarized in Table I.

In Fig. 4, the temporal variations of the wall friction velocities,uτ , at the lower wall
obtained for Case I and Case II, normalized by the initial value of the wall friction velocity,
uτ0, are shown. Similar results were obtained at the upper wall (figure not shown);uτ

gradually decreased in Case II, whileuτ remained close to unity in Case I, as was previously

FIG. 3. y-distributions of the Reynolds shear stress obtained for Case I and by Kimet al. [12].
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TABLE I

Case Specifications, Formulations of Approximation for the

Convective Terms, and the Coriolis Force Term

Case Convective terms Coriolis force term

I Skew-symmetric (−1 ≤ y/δ ≤ 1) None
II Rotational (−1 ≤ y/δ ≤ 1) Error term

III Skew-symmetric (−1 ≤ y/δ ≤ 1) Eq. (27)

found in [7]. The turbulent state gradually decayed when the rotational form was used, while
it was sustained when the skew-symmetric form was used.

Figure 5 shows the profiles of the Reynolds shear stress normalized byuτ0 obtained for
Case II att uτ0/δ = 5.0. In good agreement with the wall friction velocity shown in Fig. 4,
the total stress at both walls is≈0.7, implying that the turbulence is substantially reduced.

The profiles of the normal component of the turbulence intensity,〈v′v′〉1/2, at t uτ0/δ =
5.0 for Case I and Case II are shown in Fig. 6. The intensity obtained for Case II is
smaller than that for Case I and the peaks of the intensity found in the result for Case I are
indiscernible in the result obtained for Case II, indicating that the turbulence is decaying
in time in Case II. The streamwise and spanwise components of intensities showed similar
results, but the decrease of the normal component was the maximum.

Figure 7 shows the budget of the turbulent shear stress,〈u′v′〉, in the vicinity of the
lower wall, nondimensionalized withu4

τ0/ν obtained for Case I and Case II. The governing
equation for〈u′v′〉 is expressed as

∂〈u′v′〉
∂t

= −〈v′v′〉∂〈u〉
∂y

− ∂〈u′v′v′〉
∂y

−
〈

u′ ∂p

∂y
+ v′ ∂p

∂x

〉
+ 1

Reτ

∂2〈u′v′〉
∂y∂y

− 2
1

Reτ

〈
∂u′

∂xj

∂v′

∂xj

〉
. (9)

FIG. 4. Time evolution of the wall friction velocity,uτ , at the lower wall obtained for Case I and Case II.
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FIG. 5. y-distributions of the Reynolds shear stress obtained for Case II.

The terms on the right-hand side of Eq. (9) are called the production, convection, velocity–
pressure gradient, diffusion, and dissipation terms, respectively. Note that the distributions
of the diffusion and dissipation terms are not included in Fig. 7 because their amplitude was
small.

Figures 7a and b show the distributions near the lower wall for Case II and Case I,
respectively. Note that the Reynolds shear stress has a negative sign in the lower half of the
channel. A marked difference is seen in the results obtained using the rotational and the
skew-symmetric forms. The velocity–pressure gradient term obtained using the rotational
form shows a large negative peak aty+ ∼ 10 and becomes positive away from the wall,
whereas that obtained using the skew-symmetric form remains positive.

FIG. 6. y-profiles of the normal component of the turbulence intensity,〈v′v′〉1/2, at t uτ0/δ = 5.0 for Case I
and Case II.
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FIG. 7. Balance of the turbulent shear stress,〈u′v′〉: (a) Case II; (b) Case I. (vpg denotes the velocity–pressure
gradient term.)

It is observed that the residual of the terms in the budget of Eq. (9) shown in Fig. 7b
is very small, whereas the residual is a large negative value near the lower wall for the
budget shown in Fig. 7a. This imbalance found in Fig. 7a is inconsistent with the decay of
turbulence observed in Fig. 4, because the negative residual indicates that∂〈u′v′〉/∂t < 0.
This negativity implies that〈u′v′〉 becomes a much larger negative value with the lapse of
time. In turn, it implies an increase of the streamwise component of turbulence intensity
via the shear production term,−〈u′v′〉(∂〈u〉/∂y), in the lower half of the channel. This
inconsistency will be discussed in the following section.

A notable difference was also found in the budget of the normal component of the turbulent
energy〈v′v′〉 (figure not shown) between the results obtained using the skew-symmetric
form and the rotational form, as pointed out by Horiuti [7]. The DNS results obtained using
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the Fourier–Chebyshev polynomial expansion method shown in [12] and [15] are similar
to the results obtained using the skew-symmetric form.

The present results are in good agreement with the results obtained using the LES method
reported by Horiuti [7]. It is shown that the laminarization of the turbulent state observed
in [7] is not intrinsic to the turbulence model employed in LES, but is intrinsic to the
formulation of the approximation method for the convective terms in the Navier–Stokes
equation.

4. ANALYSIS OF TRUNCATION ERRORS

In this section, we conduct the analysis of the truncation error for the rotational form. In
[7], it was pointed out that the major error in the rotational form comes from the truncation
of the term

−u
δu

δy
+ 1

2

δu2

δy
, (10)

contained in they-momentum equation, whereas no serious error is introduced using the
skew-symmetric form when the low-order finite difference method is used. These points
were confirmed in the present study.

4.1. Estimate of Truncation Errors Involved in the Rotational Form

When the first-order partial differential operators in Eq. (10) are approximated by the
first-order central finite differences (Eq. (6)), we obtain an estimate of the exact truncation
error term, Eq. (10), using the Taylor expansion, as

h j +1 − h j

2

(
∂u

∂y

)2

j

+ h2
j +1 − h j +1h j + h2

j

4

{
∂

∂y

(
∂u

∂y

)2
}

j

. (11)

The first and second terms in Eq. (11) are first and second order with respect to the grid
intervalh j , respectively.

The corresponding error for the second-order finite difference, Eq. (7), is estimated as

h j +1h j

4

{
∂

∂y

(
∂u

∂y

)2
}

j

, (12)

in which the leading term is of second order. The identical truncation error terms with
different coefficients are contained in the first- (Eq. (11)) and the second- (Eq. (12)) order
finite difference.

We examine the contribution of the truncation error term, Eq. (10), in the balance of the
turbulent shear stress as

−
〈

u′
(

−u
δu

δy
+ 1

2

δu2

δy

)〉
, (13)

which is obtained by multiplyingu′ to the y-momentum equation. They-distributions
of the term, Eq. (13), obtained using the first-order and second-order finite difference
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FIG. 8. y-profiles of the exact truncation error term in the balance of the turbulent shear stress, Eq. (13), and
the error term approximated using the Taylor expansion, Eq. (14) and Eq. (15).

approximations forδ/δy, are shown in Fig. 8. The term contained in Eq. (13) is computed
using the velocity data obtained in Case I. The result obtained using the first-order finite
difference approximation is similar to that obtained using the second-order approximation,
although the peak value is smaller for the result obtained using the first-order approximation
than for that obtained using the second-order approximation.

In Fig. 8, we included the distributions of the error term approximated using the Taylor
expansion, Eq. (11), in the balance of the turbulent shear stress as

−
〈

u′
[

h j +1 − h j

2

(
∂u

∂y

)2

j

+ h2
j +1 − h j +1h j + h2

j

4

{
∂

∂y

(
∂u

∂y

)2
}

j

]〉
, (14)

and that approximated using the Taylor expansion, Eq. (12), as

−
〈

u′ h j +1h j

4

{
∂

∂y

(
∂u

∂y

)2
}〉

. (15)

It is observed that the distributions of Eq. (13) approximated using the first-order finite
difference method forδ/δy and Eq. (14) are almost identical. A similar result is obtained
for the second-order finite difference method, indicating that the estimate of the truncation
error term obtained using the Taylor expansion is very accurate.

In [7], it was shown that the first term in Eq. (11) is proportional to Re2
τ in the vicinity

of the wall and that it introduces a large error into they-momentum equation. Associated
with this large error, the result obtained using the first-order approximation in Fig. 8 shows
a large negative value near the wall. This large error can be eliminated by inserting the
velocity components, which are split into the mean streamwise velocity and its deviation
part, i.e.,ui = 〈ui 〉δi 1 + u′

i , into the rotational form [7]. When this splitting is inserted,
however, the laminarization of the turbulent state observed in the previous section is not
prevented. Thereby, the first term in Eq. (11) is not the dominant truncation error term; the
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FIG. 9. y-profiles of the velocity–pressure gradient term, Eq. (13), and the residual of the terms in the budget
of 〈u′v′〉, including Eq. (13).

most significant contribution arises in the second term in Eq. (11). In fact, the region with a
large negative value shown in Fig. 8 is confined only to the immediate vicinity of the wall
(y/δ ≤ −0.98).

For brevity, we carried out the following analysis using the second-order central finite
differences (Eq. (7)) for the first-order partial differential operators.

We examine the contribution of the term in Eq. (13) in the budget of〈u′v′〉 using Fig. 9, in
which the distributions of the velocity–pressure gradient term, the term in Eq. (13), and the
residual of the terms in the budget of〈u′v′〉, including Eq. (13), are shown. The truncation
error term, Eq. (13), is very large, even when the dense grid points of 129 for the present
Reynolds number are used, and balances the velocity–pressure gradient term. It should be
noted that the residual is now positive, which indicates that∂〈u′v′〉/∂t > 0. This positivity
implies that〈u′v′〉 obtains a much smaller negative value with the lapse of time, which in
turn, results in a suppression of the streamwise component of turbulence intensity via the
reduction of the shear production term,−〈u′v′〉(∂〈u〉/∂y). Thus, the inconsistency found
in the budget of〈u′v′〉 shown in Fig. 7a is eliminated.

Equation (15) can be rearranged as〈
h j +1h j

4

[
− ∂

∂y

{
u′

(
∂u

∂y

)2
}

+ 1

2

∂u′

∂y

(
∂u

∂y

)2
]〉

. (16)

When the two terms in Eq. (16) are integrated with respect toy from the lower wall to the
upper wall, the first term vanishes, while the second term remains, implying that the second
term is a major term. The second term can be rearranged by inserting the decomposition of
the velocity into the mean and the fluctuation parts,u = 〈u〉 + u′, as

h j +1h j

2

∂〈u〉
∂y

〈(
∂u′

∂y

)2
〉

+ h j +1h j

4

〈(
∂u′

∂y

)3
〉

. (17)

It was found that distribution of the term〈(∂u′/∂y)2〉 was similar to that of the term
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FIG. 10. y-profiles of the second term in Eq. (17), the term in Eq. (18), and the term in Eq. (19).

(∂〈u〉/∂y)2; i.e.,

h j +1h j

2

∂〈u〉
∂y

〈(
∂u′

∂y

)2
〉

(18)

' C1
∂〈u〉
∂y

h j +1h j

2

(
∂〈u〉
∂y

)2

, (19)

whereC1 is a numerical factor('0.4). The distributions of the terms in Eq. (18) and Eq. (19)
are compared in Fig. 10. Although the term in Eq. (18) has a longer tail away from the wall
than the term in Eq. (19), the two terms are generally similar. For comparison, the profile
of the second term in Eq. (17) is included in Fig. 10. It can be seen that the contribution of
this term is insignificant near the wall. Therefore, Eq. (16) can be approximated as〈

h j +1h j

4

[
− ∂

∂y

{
u′

(
∂u

∂y

)2
}

+ 1

2

∂u′

∂y

(
∂u

∂y

)2
]〉

' C1
∂〈u〉
∂y

h j +1h j

2

(
∂〈u〉
∂y

)2

. (20)

We note that in the evaluation of Eqs. (14), (15), (17), (18), and (19), the partial derivatives
∂/∂y were approximated using the second-order finite difference, Eq. (7), so that the partial
derivatives in these equations can just as well be evaluated by exact derivatives up to the
leading-order terms. We have also conducted an evaluation using the Chebyshev polynomial
expansions and obtained results similar to those shown in the present paper, because the
leading terms were identical for these two approximation methods.

4.2. Relationship of the Truncation Error with Nonlinear k− ε Model
and Rotating Channel Flow

In the previous section, it was shown that the truncation error associated with the first-
and second-order finite differences yields an extra term in the budget of the turbulent shear
stress, and its contribution to the budget is considerably large. The role of this extra term,
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however, has not yet been clearly revealed. By turning to the nonlineark − ε model for the
Reynolds stresses in the Reynolds averaged turbulence models [16], we show that the role
of the major truncation error term, Eq. (20), is analogous to that of the Coriolis force term
in channel flow rotating about thez-axis.

The nonlineark − ε model has been successfully used to express the anisotropy of the
turbulence intensities in the sheared turbulence (see Speziale [16] and references therein).
For flows which are homogeneous in two directions, this model yields the approximation
of the Reynolds stresses as

〈u′u′〉 ' 2

3
k + k3

ε2

{(
2

3
Cτ1 − 1

3
Cτ3

)(
∂〈u〉
∂y

)2
}

,

〈v′v′〉 ' 2

3
k + k3

ε2

{(
−1

3
Cτ1 + 2

3
Cτ3

)(
∂〈u〉
∂y

)2
}

, (21)

〈w′w′〉 ' 2

3
k + k3

ε2

{(
−1

3
Cτ1 − 1

3
Cτ3

)(
∂〈u〉
∂y

)2
}

,

wherek denotes the turbulent kinetic energy,k = 〈u′u′ + v′v′ + w′w′〉/2, ε denotes the
dissipation rate ofk, andCτ1 andCτ3 are model parameters. The values forCτ1 andCτ3

contained in Eq. (21) were optimized in the simulation of turbulent channel flow, where the
values fork andε were provided by solving the governing equations fork andε using the
k − ε model [16]. It was shown thatCτ1 is positive('0.05) andCτ3 is negative('−0.01)
[16], so that the turbulence intensities are correctly predicted as〈u′u′〉 > 〈w′w′〉 > 〈v′v′〉
near the wall.

From Eq. (21), we derive the approximation for the term〈u′u′ − v′v′〉 as

〈u′u′ − v′v′〉 ' k3

ε2

{
(Cτ1 − Cτ3)

(
∂〈u〉
∂y

)2
}

, (22)

in which the term identical to the term in Eq. (20) is found, although their coefficients differ.
In the nonlineark−ε model, the length scale is represented by the termk3/2/ε [17], whereas
it is represented by the term

√
(h j +1h j )/2 in Eq. (20).

The present analysis shows that the truncation error term, Eq. (13), can be approximated
as

−
〈

u′
(

−u
δu

δy
+ 1

2

δu2

δy

)〉
' −2ÄR〈u′u′ − v′v′〉, (23)

ÄR = CR
∂〈u〉
∂y

, (24)

by noting that the term in Eq. (20) is multiplied by the term∂〈u〉/∂y, whereCR is a numerical
constant. The right-hand side of Eq. (23) corresponds to the rotational stress generation term
in the channel flow rotating with the effective angular velocityÄR about thez-axis.

In Fig. 11, the distribution of the truncation error term, Eq. (13), is shown with the
rotational stress generation term−2ÄR〈u′u′ − v′v′〉. They are almost identical whenCR is
chosen to be−0.0115, indicating that in the budget of the turbulent shear stress, the error
term behaves analogously to the Coriolis force term acting in the rotating channel flow.
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FIG. 11. y-profiles of the truncation error term in the budget of〈u′v′〉, Eq. (13), and the rotational stress
generation term−2ÄR〈u′u′ − v′v′〉.

The results obtained in the present paper are similar to those reported in [7] despite the
difference in the numerical method (DNS in the present study and LES in [7]), the difference
in the Reynolds number (Reτ = 180 in the present study and 640 in [7]), and the difference
in the mesh configurations. It may be considered that the agreement of the truncation error
term and the Coriolis force term, Eq. (23), is a numerical coincidence, but based on the
comparison of the results of these two studies and on the observation that the truncation
error term can be analytically correlated to the Coriolis force term via the nonlineark − ε

model, we consider that this agreement is not a mere coincidence.
However, there are similarities and differences between the pure Coriolis force term and

the truncation error term associated with the rotational form.
The angular velocity,ÄR, is dependent on the distance from the wall, unlike the Coriolis

force acting on the pure rotating channel in which the angular velocity,Ä, is constant
throughout the channel. BecauseÄ is constant for pure rotating channel flow, an asymmetry
of the Coriolis force acting on the velocity fields arises between the lower and upper halves
of the channel [18]. WhenÄ is negative, the turbulence is reduced in the lower half of the
channel (suction side), while it is enhanced in the upper half of the channel (pressure side).

In contrast, the sign of the effective angular velocity for the truncation error term,ÄR,
is dependent on they coordinate.ÄR is very large in close proximity to the walls because
∂〈u〉/∂y ' Reτ in these regions, but rapidly decreases with the distance from the wall. Its
sign is negative in the lower half and positive in the upper half of the channel, and thus
asymmetry does not arise. The dimensionless parameter,S(=−2ÄR/(∂〈u〉/∂y)), defined
in [18] is constant throughout the channel (=0.023). As was shown in [18], the positiveS
is associated with the stabilized flow, and the turbulence level is lowered in both the lower
and upper halves of the channel.

Table II lists the correspondence of the terms in the budget of the Reynolds stresses
between the terms due to the Coriolis force (rotational stress generation term) for the
rotating channel and the truncation error terms due to the rotational form. It was found that
in the budget of the normal component of turbulence fluctuations,〈v′v′〉, there is a term
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TABLE II

Correspondence between the Rotational Stress Generation Term for the Rotating

Channel and the Truncation Error Term for the Rotational Form in the Budget of

the Reynolds Stresses

Reynolds stress Rotational stress generation term Truncation error term

〈u′u′〉 4ÄR〈u′v′〉 None

〈v′v′〉 −4ÄR〈u′v′〉 −2
〈
v′
(
−u ∂u

∂y
+ 1

2
∂u2

∂y

)〉
〈u′v′〉 −2ÄR〈u′u′ − v′v′〉 −

〈
u′
(
−u ∂u

∂y
+ 1

2
∂u2

∂y

)〉
corresponding to the Coriolis force term:

−2

〈
v′

(
−u

δu

δy
+ 1

2

δu2

δy

)〉
. (25)

Figure 12 shows they-distributions of the term in Eq. (25), and the rotational stress gener-
ation term due to the angular velocity,ÄR, as

−4ÄR〈u′v′〉, (26)

whereCR was set as−0.0115. They are similar to each other in the vicinity of the wall
(y/δ = −1.0∼ −0.95). In this region, the direct effect of the Coriolis force term and the
error term is to reduce the amplitude of〈v′v′〉. At a distance from the wall, the truncation
error term becomes positive, while the rotational stress generation term remains negative,
but in this region, the contribution of the truncation error term to the budget of〈v′v′〉 is
small. Thereby, the normal fluctuation is damped, as shown in Fig. 6, due to the truncation
error term.

FIG. 12. y-profiles of the truncation error term in the budget of〈v′v′〉, Eq. (25), and the rotational stress
generation term−4ÄR〈u′v′〉.
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It should be noted that, in the budget of the streamwise component of turbulent fluc-
tuations,〈u′u′〉, there is no truncation error term corresponding to the rotational stress
generation term because there is not significant error term in thex-momentum equation. In
the system rotating with angular velocityÄ or ÄR, the rotational stress generation terms in
the budgets of〈u′u′〉 and〈v′v′〉 cancel each other; i.e., the turbulent kinetic energy is con-
served in the presence of the Coriolis force term, while it is not conserved in the presence of
the extra term due to the truncation error. However, the amplitude of the normal fluctuation,
〈u′u′〉, is reduced via a reduction of the shear production term,−〈u′v′〉(∂〈u〉/∂y), due to
the decrease of the turbulent shear stress,〈u′v′〉. In the budget of〈u′u′〉 for the rotating
channel, the reduction of〈u′u′〉 due to the decrease of the shear production term was more
significant than the reduction due to the Coriolis force term.

The diagram for the turbulence suppression observed in the present study can be sum-
marized as follows. A large truncation error due to the rotational form in they-momentum
equation primarily reduces the turbulent shear stress and the fluctuations normal to the wall,
acting similarly to the Coriolis force term. In turn, it dampens the shear production term for
the streamwise component of fluctuations, and subsequently, the streamwise fluctuation is
suppressed.

We note that, corresponding to the nonconservation of the turbulent kinetic energy in
the extra term due to the truncation error, kinetic energy is not conserved in the discretized
sense when the rotational form is used.

4.3. DNS of Rotating Channel Flow

For comparison, we carried out DNS of rotating channel flow, in which the Coriolis force
with an angular velocity ofÄR with CR = −0.0115 about thez-axis was explicitly applied
as

∂ui

∂t
+ ∂(ui u j )

∂xj
= −∂p∗

∂xi
+ 1

Re

∂2ui

∂xk∂xk
− 2εimnÄmun − δi 2

r 2

2

∂Ä2
R

∂xi
, (27)

where(Ä1, Ä2, Ä3) = (0, 0, ÄR), εi jk is the alternating tensor, andp∗ is the reduced static
pressure:

p∗ = p − 1

2
Ä2

Rr 2. (28)

The term,12Ä2
Rr 2, is the centrifugal force potential caused by system rotation, wherer is the

distance of any point in the field from the axis of rotation. The skew-symmetric form was
used for the convective terms throughout the channel in conjunction with the second-order
finite differences (Eq. (7)) for first-order partial differential operators in they direction
(Case III).

Because of the dependence inÄR on they-coordinate and the nonintegrability of the
term,Ä2

R with respect toy, the last term in Eq. (27) was not absorbed into the centrifugal
force potential, unlike in the pure rotating channel.

The last term in Eq. (27) yields the extra term in the budget of the Reynolds shear stress,
〈u′v′〉, given as 〈

u′r 2

2

∂Ä2
R

∂xi

〉
= 1

2
〈u′r 2〉∂Ä2

R

∂xi
. (29)
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FIG. 13. Time evolution of the wall friction velocity,uτ , at the lower wall obtained for Case II and Case III.

Since the termr 2 is deterministic,〈u′r 2〉 = 〈u′〉〈r 2〉 = 0, this extra term is negligible in
the budget of the Reynolds shear stress on average, although the computed value of this
term may not be exactly equal to zero because of the finite statistical sample size used
in computing averages. A similar extra term is yielded in the budget of〈v′v′〉, but the
contribution of this term is also negligible on average.

Figure 13 shows the time development of the wall friction velocity at the lower wall
obtained from Case III. Similar results were obtained at the upper wall (figure not shown).
Its temporal variation is qualitatively similar to the development ofuτ , obtained using the
rotational form obtained for Case II, butuτ , obtained for Case III, decreases rapidly. We
consider that this difference is attributable to the difference between the rotational stress
generation term and the truncation error term in the budget of〈v′v′〉 shown in Fig. 12. The
amplitude of the truncation error term is smaller than that of the rotational stress generation
term, which is consistent with the slower decay of turbulence in the result obtained using
the rotational form in Case II. This slower decay may also be attributable to the absence of
the truncation error term in the budget of〈u′u′〉.

5. ELIMINATION OF LARGE TRUNCATION ERRORS

Large truncation errors found in the previous section were generated because the product
rule [10],

∂( f g)

∂y
= ∂ f

∂y
g + f

∂g

∂y
, (30)

is not satisfied when the conventional finite difference scheme is used for the first-order
partial differential operator∂/∂y. This inaccuracy in approximating the product rule is
significant when the first- and second-order finite differences (Eqs. (6) and (7)) are used.
We have found that, when the third- or fourth-order finite differences are used, the inaccuracy
of the approximation of the product rule is substantially reduced, and the laminarization of
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the turbulent state observed in Section 3 is prevented (data not shown). The drawback of
the higher-order finite differences is that the additional boundary conditions are required
near the walls.

A scheme which satisfies the product rule, even when the second-order finite differences
are used, was considered by Schumann [19]. Recent works by Kajishima [20, 21], Suzuki and
Kawamura [22], and Kawamura and Kondoh [23] showed that, when the term( f (∂g/∂y)) j

is approximated as(
f
∂g

∂y

)
j

∼ α
f j +1 + f j

2

gj +1 − gj

h j +1
+ (1 − α)

f j + f j −1

2

gj − gj −1

h j
, (31)

the product rule is satisfied because the terms on the right-hand side of Eq. (31) can be
rewritten as{

α
f j +1gj +1 − f j gj

h j +1
+ (1 − α)

f j gj − f j −1gj −1

h j

}
−

{
α

gj +1 + gj

2

f j +1 − f j

h j +1
+ (1 − α)

gj + gj −1

2

f j − f j −1

h j

}
∼

{
∂( f g)

∂y

}
j

−
(

g
∂ f

∂y

)
j

,

whereα is arbitrary, in order to satisfy the product rule, but it is generally chosen to be equal
to h j /(h j +1 + h j ). Therefore, this scheme is consistent with the product rule (referred to as
the consistent scheme [22] below). In the consistent scheme, the convective terms formulated
by the skew-symmetric, divergence, and convective forms are algebraically equivalent to
each other so long as the continuity equation of the velocity field is ensured. These second-
order-accuracy consistent schemes can be extended to the fourth-order-accuracy schemes
[20, 21].

When the rotational form is used in conjunction with the consistent scheme, a large
truncation error presented in the previous section can be eliminated, because in this scheme,

δu2

δy
= 2u

δu

δy
. (32)

It should be noted, however, that another drawback of the rotational form, i.e., the occur-
rence of large aliasing errors, is not eliminated, even when the consistent scheme is used.
Therefore, when dealiasing is not performed for the convective terms, we consider that the
skew-symmetric form, used in conjunction with the consistent scheme, still yields better
results, because the aliasing errors are reduced in the skew-symmetric form [9].

An alternative scheme which eliminates the large truncation error is the one used by
Kravchenko and Moin [10]. They conducted LES of turbulent channel flow using the
dealiased Fourier pseudospectral method in thex andz directions, and the B-spline method
in the wall-normal direction. The streamwise component of the velocityu was expanded as

u(x, y, z, t) =
∑

kx, j,kz

ũ j (kx, kz, t) eikx xeikzzBk
j (y), (33)

whereBk
j (y) is the B-spline of orderk, andkx andkz denote the wave numbers, respectively,

in the x andz directions.Bk
j (y) is defined on a set of knot pointst j [10]. In this method,
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the term(u(∂u/∂y)) is evaluated via the discrete weak form as∫
V

e−ikx xe−ikzzBk
l (y)

(
u

∂u

∂y

)
dx dy dz (34)

=
∑

m

∑
n

[ ∫
Bk

l (y)

{
Bk

m(y)
∂ Bk

n(y)

∂y

}
dy

]
ũmũn, (35)

using the method of weighted residuals, whereV denotes the entire computational domain.
Similarly, the term∂u2/∂y can be evaluated as

∑
m

∑
n

[ ∫
Bk

l (y)
∂

∂y

{
Bk

m(y)Bk
n(y)

}
dy

]
ũmũn. (36)

BecauseBk
j (y) are the (piecewise) polynomials, Eq. (36) can be rewritten as

∑
m

∑
n

[ ∫
Bk

l (y)

{
Bk

m(y)
∂ Bk

n(y)

∂y

}
dy

]
ũmũn

(37)

+
∑

m

∑
n

[ ∫
Bk

l (y)

{
Bk

n(y)
∂ Bk

m(y)

∂y

}
dy

]
ũmũn

= 2
∑

m

∑
n

[ ∫
Bk

l (y)

{
Bk

m(y)
∂ Bk

n(y)

∂y

}
dy

]
ũmũn. (38)

Therefore, in this method, Eq. (32) is satisfied and the large truncation error does not arise,
even when the rotational form is used.

In summary, the integration-by-parts used analytically in derivations of conservation
properties can also be directly applied to some discretization methods, namely, the consistent
scheme and the Kravchenko–Moin scheme.

6. CONCLUSIONS

The truncation error of the rotational form for the convective terms in the Navier–Stokes
equation is examined. The flow field which was considered in the present study, was the
fully developed turbulent channel flow. The direct numerical simulation (DNS) method was
used to solve the Navier–Stokes and continuity equations. The partial derivatives in the
wall-normal direction were approximated by the first- and second-order finite difference
method.

It was shown that the major error comes from the truncation error in the normal component
of the momentum equation. The heuristic estimate of the truncation error using the Taylor
expansion revealed that this truncation error term is comparable to the difference between
the streamwise and normal components of the turbulence fluctuations represented by the
nonlineark − ε model in the Reynolds averaged turbulence models. Therefore, in the
governing equations for the Reynolds shear stress and the normal stress, this truncation
error term behaves analogously to the rotational stress generation term due to the Coriolis
force acting in the channel flow rotating about the spanwise axis.

Similarities to and differences from the conventional rotating channel flow were dis-
cussed. The effective angular velocity due to the truncation error term was dependent on
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the distance from the wall, and the turbulence was reduced on both sides of the walls. The
results were in good agreement with the previous results obtained using the large-eddy
simulation method [7].

The DNS of the channel flow rotating with this effective angular velocity was further
conducted to assess this analogy. The time development of the wall friction velocity was
similar to that obtained in DNS using the rotational form.

Numerical schemes which eliminate the large truncation error for the rotational form
were discussed.

The truncation errors are roughly divided into two groups: dissipative errors and dispersive
errors. When the convective terms are approximated using the central finite differences, the
Taylor expansion of the truncation error shows that the error term is generally dispersive [24].
In fact, when the estimates of the truncation errors, Eq. (11) and Eq. (12), are integrated with
respect toy from the lower wall to the upper wall, the integrals vanish; i.e., the momentum
is neither increased nor decreased by the truncation error term. The decay of turbulence
previously observed in the numerical simulation was mostly attributable to the excessively
dissipative errors [24]. In the present study, we have shown that some dispersive error can
also induce the decay of turbulence due to the nonlinearity of the convective terms. Some
care should be taken in dealing with the low-order finite difference method, because the
truncation error terms of the multiples of the∂u/∂y term, usually associated with the first- or
second-order finite difference method, can lead to erroneous results particularly in turbulent
flows with strong shear.
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